67 research outputs found

    Perinatal exposure of rats to a maternal diet with varying protein quantity and quality affects the risk of overweight in female adult offspring

    Get PDF
    The maternal protein diet during the perinatal period can program the health of adult offspring. This study in rats evaluated the effects of protein quantity and quality in the maternal diet during gestation and lactation on weight and adiposity in female offspring. Six groups of dams were fed a high-protein (HP; 47% protein) or normal-protein (NP; 19% protein) isocaloric diet during gestation (G) using either cow's milk (M), pea (P) or turkey (T) proteins. During lactation, all dams received the NP diet (protein source unchanged). From postnatal day (PND) 28 until PND70, female pups (n=8) from the dam milk groups were exposed to either an NP milk diet (NPMW) or to dietary self-selection (DSS). All other pups were only exposed to DSS. The DSS design was a choice between five food cups containing HPM, HPP, HPT, carbohydrates or lipids. The weights and food intakes of the animals were recorded throughout the study, and samples from offspring were collected on PND70. During the lactation and postweaning periods, body weight was lower in the pea and turkey groups (NPG and HPG) versus the milk group (P<.0001). DSS groups increased their total energy and fat intakes compared to the NPMW group (P<.0001). In all HPG groups, total adipose tissue was increased (P=.03) associated with higher fasting plasma leptin (P<.05). These results suggest that the maternal protein source impacted offspring body weight and that protein excess during gestation, irrespective of its source, increased the risk of adiposity development in female adult offspring

    Dietary Supplementation With Chinese Herbal Residues or Their Fermented Products Modifies the Colonic Microbiota, Bacterial Metabolites, and Expression of Genes Related to Colon Barrier Function in Weaned Piglets

    Get PDF
    To explore the feasibility of dietary Chinese herbal residue (CHR) supplementation in swine production with the objective of valorization, we examined the effects of dietary supplementation with CHR or fermented CHR products on the colonic ecosystem (i.e., microbiota composition, luminal bacterial metabolites, and expression of genes related to the intestinal barrier function in weaned piglets). We randomly assigned 120 piglets to one of four dietary treatment groups: a blank control group, CHR group (dose of supplement 4 kg/t), fermented CHR group (dose of supplement 4 kg/t), and a positive control group (supplemented with 0.04 kg/t virginiamycin, 0.2 kg/t colistin, and 3000 mg/kg zinc 0.04 kg/t virginiamycin, 0.2 kg/t colistin, and 3000 mg/kg zinc oxide). Our results indicate that dietary supplementation with CHR increased (P &lt; 0.05) the mRNA level corresponding to E-cadherin compared with that observed in the other three groups, increased (P &lt; 0.05) the mRNA level corresponding to zonula occludens-1, and decreased (P &lt; 0.05) the quantity of Bifidobacterium spp. When compared with the blank control group. Dietary supplementation with fermented CHR decreased (P &lt; 0.05) the concentration of indole when compared to the positive control group; increased (P &lt; 0.05) the concentrations of short-chain fatty acids compared with the values measured in the CHR group, as well as the mRNA levels corresponding to interleukin 1 alpha, interleukin 2, and tumor necrosis factor alpha. However, supplementation with fermented CHR decreased (P &lt; 0.05) interleukin 12 levels when compared with the blank control group. Collectively, these findings suggest that dietary supplementation with CHR or fermented CHR modifies the gut environment of weaned piglets

    Effects of dietary l-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein

    Get PDF
    Placental vascular formation and blood flow are crucial for fetal survival, growth and development, and arginine regulates vascular development and function. This study determined the effects of dietary arginine or N-carbamylglutamate (NCG) supplementation during late gestation of sows on the microRNAs, vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS) expression in umbilical vein. Twenty-seven landrace × large white sows at day (d) 90 of gestation were assigned randomly to three groups and fed the following diets: a control diet and the control diet supplemented with 1.0% l-arginine or 0.10% NCG. Umbilical vein of fetuses with body weight around 2.0 kg (oversized), 1.5 kg (normal) and 0.6 kg (intrauterine growth restriction, IUGR) were obtained immediately after farrowing for miR-15b, miR-16, miR-221, miR-222, VEGFA and eNOS real-time PCR analysis. Compared with the control diets, dietary Arg or NCG supplementation enhanced the reproductive performance of sows, significantly increased (P < 0.05) plasma arginine and decreased plasma VEGF and eNOS (P < 0.05). The miR-15b expression in the umbilical vein was higher (P < 0.05) in the NCG-supplemented group than in the control group. There was a trend in that the miR-222 expression in the umbilical vein of the oversized fetuses was higher (0.05 < P < 0.1) than in the normal and IUGR fetuses. The expression of eNOS in both Arg-supplemented and NCG-supplemented group were lower (P < 0.05) than in the control group. The expression of VEGFA was higher (P < 0.05) in the NCG-supplemented group than in the Arg-supplemented and the control group. Meanwhile, the expression of VEGFA of the oversized fetuses was higher (P < 0.05) than the normal and IUGR fetuses. In conclusion, this study demonstrated that dietary Arg or NCG supplementation may affect microRNAs (miR-15b, miR-222) targeting VEGFA and eNOS gene expressions in umbilical vein, so as to regulate the function and volume of the umbilical vein, provide more nutrients and oxygen from the maternal to the fetus tissue for fetal development and survival, and enhance the reproductive performance of sows

    Dietary proline supplementation alters colonic luminal microbiota and bacterial metabolite composition between days 45 and 70 of pregnancy in Huanjiang mini-pigs

    No full text
    Background: Pregnancy is associated with important changes in gut microbiota composition. Dietary factors may affect the diversity, composition, and metabolic activity of the intestinal microbiota. Among amino acids, proline is known to play important roles in protein metabolism and structure, cell differentiation, conceptus growth and development, and gut microbiota re-equilibration in case of dysbiosis. Results: Dietary supplementation with 1% proline decreased (P < 0.05) the amounts of Klebsiella pneumoniae, Peptostreptococcus productus, Pseudomonas, and Veillonella spp. in distal colonic contents than that in the control group. The colonic contents of Butyrivibrio fibrisolvens, Bifidobacterium sp., Clostridium coccoides, Clostridium coccoides-Eubacterium rectale, Clostridium leptum subgroup, Escherichia coli, Faecalibacterium prausnitzii, Fusobacterium prausnitzii, and Prevotella increased (P < 0.05) on d 70 of pregnancy as compared with those on d 45 of pregnancy. The colonic concentrations of acetate, total straight-chain fatty acid, and total short-chain fatty acids (SCFA) in the proline-supplemented group were lower (P < 0.05), and butyrate level (P = 0.06) decreased as compared with the control group. Almost all of the SCFA displayed higher (P < 0.05) concentrations in proximal colonic contents on d 70 of pregnancy than those on d 45 of pregnancy. The concentrations of 1,7-heptyl diamine (P = 0.09) and phenylethylamine (P < 0.05) in proximal colonic contents were higher, while those of spermidine (P = 0.05) and total bioamine (P = 0.06) tended to be lower in the proline-supplemented group than those in the control group. The concentrations of spermidine, spermine, and total bioamine in colonic contents were higher (P < 0.05) on d 70 of pregnancy than those measured on d 45 of pregnancy. In contrast, the concentration of phenylethylamine was lower (P < 0.05) on d 70 than on d 45 of pregnancy. Conclusion: These findings indicate that L-proline supplementation modifies both the colonic microbiota composition and the luminal concentrations of several bacterial metabolites. Furthermore, our data show that both the microbiota composition and the concentrations of bacterial metabolites are evolving in the course of pregnancy. These results are discussed in terms of possible implication in terms of luminal environment and consequences for gut physiology and health

    The burden of liver disease in Europe. A review of available epidemiological data.

    Get PDF
    The past 30 years have witnessed major progress in the knowledge and management of liver disease, yet approximately 29 million people in the European Union still suffer from a chronic liver condition. Difficulties in accessing data from individual countries hinder global evaluation of liver disease in Europe. This report reviews 260 epidemiological studies published in the last five years to survey the current state of evidence on the burden of liver disease in Europe and its causes. The four leading causes of cirrhosis and primary liver cancer in Europe are harmful alcohol consumption, viral hepatitis B and C and metabolic syndromes related to overweight and obesity. Chronic alcohol consumption is the main cause of cirrhosis in Europe. Alcohol consumption decreased in the 1990s, but has increased again in the last decade to stabilize at a high level of >9 litres of pure alcohol per year on average, although there are large variations among European countries. According to WHO, liver cirrhosis accounted for 1.8% of all deaths in Europe (using WHO’s wide geographical definition), causing around 170,000 deaths per year. In the last decades of the 20th century, a very strong east-west gradient in mortality rates was observed, with the level of liver cirrhosis mortality in south-eastern Europe (especially in Hungary and Moldova but also in Slovakia, Slovenia and Romania) and in northeastern European countries achieving rates never before seen in Europe (figs. 1 and 2, see page 9 and 11). However, in recent years, liver cirrhosis has also become a serious health threat in some Western European countries, such as the United Kingdom and Ireland, where over the last 10 years the associated mortality has increased

    Pomegranate peel extract decreases small intestine lipid peroxidation by enhancing activities of major antioxidant enzymes

    No full text
    BACKGROUND: Pomegranate peel extract (PPE) contains several compounds with antioxidative properties. PPE added to foods may interact with endogenous antioxidants and promote health. However, little is known about the biochemical mechanisms by which PPE exerts their actions on tissues of biological systems in vivo. The purpose of this study was to determine the effects of PPE on activities of antioxidant enzymes. Mice were used to investigate the effects of PPE on plasma levels of malondialdehyde (MDA), tissue MDA content and activities of superoxide dismutase 1 (SOD1), SOD2 and glutathione peroxidase (GPX) in the small intestine, liver and skeletal muscle - different tissues involved in the digestion, absorption and metabolism of dietary nutrients. Control mice were fed a standard diet, whereas treated mice were fed for 40 days with the standard diet containing 5% or 10% PPE.RESULTS: Mice fed the 10% PPE diet exhibited lower plasma MDA concentrations, reduced content of MDA in the small intestine and liver and higher levels of SOD1 and GPX activities in the small intestine compared to mice fed the control diet.CONCLUSIONS: These findings demonstrate that intake of PPE in diet attenuates small intestine lipid peroxidation and strengthens the first line of small intestine antioxidant defense by enhancing enzymatic antioxidative pathways. PPE is worthy of further study as a therapeutic approach to prevent peroxidative stress-induced gut pathogenesis

    Dietary proline supplementation alters colonic luminal microbiota and bacterial metabolite composition between days 45 and 70 of pregnancy in Huanjiang mini-pigs

    No full text
    Abstract Background Pregnancy is associated with important changes in gut microbiota composition. Dietary factors may affect the diversity, composition, and metabolic activity of the intestinal microbiota. Among amino acids, proline is known to play important roles in protein metabolism and structure, cell differentiation, conceptus growth and development, and gut microbiota re-equilibration in case of dysbiosis. Results Dietary supplementation with 1% proline decreased (P < 0.05) the amounts of Klebsiella pneumoniae, Peptostreptococcus productus, Pseudomonas, and Veillonella spp. in distal colonic contents than that in the control group. The colonic contents of Butyrivibrio fibrisolvens, Bifidobacterium sp., Clostridium coccoides, Clostridium coccoides-Eubacterium rectale, Clostridium leptum subgroup, Escherichia coli, Faecalibacterium prausnitzii, Fusobacterium prausnitzii, and Prevotella increased (P < 0.05) on d 70 of pregnancy as compared with those on d 45 of pregnancy. The colonic concentrations of acetate, total straight-chain fatty acid, and total short-chain fatty acids (SCFA) in the proline-supplemented group were lower (P < 0.05), and butyrate level (P = 0.06) decreased as compared with the control group. Almost all of the SCFA displayed higher (P < 0.05) concentrations in proximal colonic contents on d 70 of pregnancy than those on d 45 of pregnancy. The concentrations of 1,7-heptyl diamine (P = 0.09) and phenylethylamine (P < 0.05) in proximal colonic contents were higher, while those of spermidine (P = 0.05) and total bioamine (P = 0.06) tended to be lower in the proline-supplemented group than those in the control group. The concentrations of spermidine, spermine, and total bioamine in colonic contents were higher (P < 0.05) on d 70 of pregnancy than those measured on d 45 of pregnancy. In contrast, the concentration of phenylethylamine was lower (P < 0.05) on d 70 than on d 45 of pregnancy. Conclusion These findings indicate that L-proline supplementation modifies both the colonic microbiota composition and the luminal concentrations of several bacterial metabolites. Furthermore, our data show that both the microbiota composition and the concentrations of bacterial metabolites are evolving in the course of pregnancy. These results are discussed in terms of possible implication in terms of luminal environment and consequences for gut physiology and health

    Hyperosmolar environment and intestinal epithelial cells: impact on mitochondrial oxygen consumption, proliferation, and barrier function in vitro

    Get PDF
    The aim of the present study was to elucidate the in vitro short-term (2-h) and longer-term (24-h) effects of hyperosmolar media (500 and 680 mOsm/L) on intestinal epithelial cells using the human colonocyte Caco-2 cell line model. We found that a hyperosmolar environment slowed down cell proliferation compared to normal osmolarity (336 mOsm/L) without inducing cell detachment or necrosis. This was associated with a transient reduction of cell mitochondrial oxygen consumption, increase in proton leak, and decrease in intracellular ATP content. The barrier function of Caco-2 monolayers was also transiently affected since increased paracellular apical-to-basal permeability and modified electrolyte permeability were measured, allowing partial equilibration of the trans-epithelial osmotic difference. In addition, hyperosmotic stress induced secretion of the pro-inflammatory cytokine IL-8. By measuring expression of genes involved in energy metabolism, tight junction forming, electrolyte permeability and intracellular signaling, different response patterns to hyperosmotic stress occurred depending on its intensity and duration. These data highlight the potential impact of increased luminal osmolarity on the intestinal epithelium renewal and barrier function and point out some cellular adaptive capacities towards luminal hyperosmolar environment
    • 

    corecore